Chemical Equilibrium

Chapter 13

Equilibrium

- Must have a reversible reaction
- Rate of the forward and reverse reactions are EQUAL
- Concentrations of reactants and products stay constant (not equal!)
- (a "dynamic state" equal but opposite change is always occurring)

Mass Action Expression (Law of Mass Action)

• A general description of the equilibrium condition Ex. $jA + kB \rightarrow lC + mD$

$$\frac{[C]^{l}[D]^{m}}{[A]^{j}[B]^{k}}$$

Mass action expression = $\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} B \end{bmatrix}$

- For a system at equilibrium the value of K
- If [equil]'s are known, the value of K_{eq} can be calculated:

13.2 (p606) Haber Process at
$$127^{\circ}$$
C [NH₃]=3.1x10⁻² M
[N₂]=8.5x10⁻¹ M

Equilibrium Position

- a set of concentrations present when the system is at equilibrium (value of mass action expression = k)
- for a reaction there are an infinite number of equilibrium positions (Table 13.1, p527)
- for a reaction system, equilibrium will be establishes if you start with
 - all reactants i.
 - ii. all products
 - any combination of reactants or products iii.
 - (ex. 13.3, p609-shows different equilibrium positions=k)

Equilibrium Expressions for Gaseous Systems

concentration can be indicated in terms of pressure*

derived on p611-612

rtial pressures

$$K_p = K_c (RT)^{\Delta n}$$

(units are usually ommited)

 Δn = total # of mols of gaseous products – total # mols of gaseous reactants • if Δn = 0, K_p=K_c

13.5 (p612)

Units on K_c or K_p:

- units depend on the specific reaction
- often omitted in tables of K_c & K_p values

Heterogeneous Equilibrium

- equilibrium systems involving more than one phase
- the equilibrium position of a heterogeneous system <u>does not</u> depend on the amount of solid or liquid present
- [solids] & [liquids] are <u>constant</u>
- as such they do NOT appear in the mass action expression
- ex. $CaCO_{3(s)} \leftrightarrow CaO_{(s)} + CO_{2(g)}$

$$K = \frac{\left[CaO_{(s)}\right]CO_{2(g)}}{\left[CaCO_{3(s)}\right]}$$

• but the expression is evaluated with all constants together

$$\frac{K^{1}[CaCO_{3(s)}]}{[CaO_{(s)}]} = [CO_{2(g)}] = K_{eq}$$

ex. $2H_2O_{(1)} = 2H_{2(g)} + O_{2(g)}$ (set constant []=1) $K = \frac{[H_2]^2[O_2]}{[H_2]^2[O_2]} = \frac{[H_2]^2[O_2]}{[H_2]^2[O_2]}$

$$K_{p} = \frac{(P_{H_{2}})^{2}(P_{O_{2}})}{1} = (P_{H_{2}})^{2}(P_{O_{2}})$$

(ex. 13.6, p614-find K & K_p expressions)

Evaluating K

...

- The magnitude of K indicates the tendency for a reaction (→or←) to occur (but not how fast!)
- K much ≥ 1

- o system consists of mostly products
- reaction goes nearly to completion
- equilibrium lies far to the right

 $(R_{left} \rightarrow P_{right})$

- K <u>very small</u>
 - o system consists of mostly reactants
 - o forward reaction does not occur very much
 - o equilibrium position lies far to the left

Reaction Quotient (Q)

- the value obtained when the systems initial concentrations (before equilibrium is reached) are applied (put into) to the mass action expression
- is used to determine which way the system must shift to reach equilibrium
 - \circ If Q=k, the system IS in equilibrium
 - If Q>k, then [P] is too large
 - System must shift to the left to achieve equilibrium (less[P], more [R] needed
 - If Q<k, then [R] is too large
 - System must shift to the right to achieve equilibrium (more [P] needed, less [R])
- Ex. For the synthesis of ammonia at 500°C, the equilibrium constant is 6.0X10⁻². Predict the direction in which the system will shift to reach equilibrium in each of the following cases:
 - o $[NH_3]_0 = 1.0X10^{-3}M; [N_2]_0 = 1.0X10^{-5}M; [H_2]_0 = 2.0X10^{-3}M$
 - o $[NH_3]_0 = 2.0X10^{-4}M; [N_2]_0 = 1.5X10^{-5}M; [H_2]_0 = 3.54X10^{-1}M$
 - o $[NH_3]_0 = 1.0X10^{-4}M; [N_2]_0 = 5.0M; [H_2]_0 = 1.0X10^{-2}M$

Calculating Equilibrium Concentrations (& Pressures)

- You must have a known value of k_c or k_p
- Using the [initial] and the direction in which the system must shift to reach equilibrium, you must set up variables to equal [equilibrium]s
- Ex. $CO_{(g)} + H_2O_{(g)} \rightarrow CO_{2(g)} + H_{2(g)}$ at 700K K=5.10

Calculate the [equil] of all species if 1.000mol of each gas are mixed in a 1.000L flask

 Ex. (still using a perfect square) H_{2(g)} + F_{2(g)} → 2HF_(g) K = 1.15X10²
3.000 mole of each component in a 1.500L flask [equil]'s

What happens when [P]/[R] is not a perfect square?? Quadratic Formula

• Ex. Suppose for a synthesis of hydrogen fluoride from hydrogen and fluorine, 3.000 mol H₂ and 6.000 mol F₂ are mixed in a 3.000L flask. Assume the equilibrium constant for the synthesis reaction at this temperature is 1.15×10^2 . Calculate the equilibrium concentration for each component.

 $H_{2(g)} + F_{2(g)} \rightarrow 2HF_{(g)}$

Ex. Assume that gaseous hydrogen iodide is synthesized from hydrogen gas and iodine vapor at a temperature where the equilibrium constant is 1.00X10². Suppose HI at 5.000X10⁻¹ atm, H₂ at 1.000X 10⁻² atm, and I₂ at 5.000X10⁻³ atm are mixed in a 5.000L flask. Calculate the equilibrium pressures of all species. Calculate Kc H_{2(g)} + I_{2(g)} ← > 2HI_(g)

Simplifying the Problem Solving Procedure

- For systems with small keq values shifting right
 - The shift to the right will be very small (the smaller the value of the k the more reactants you have)
 - The change in concentration of the the reactants will be so small that it will be negligible
 - Ex. [reactant] = 1M
 - $[equil] = 1 X \approx 1M$ (this will alleviate the need for the Quadratic Equation)
- Ex. Gaseous NOCl decomposes to form the gases NO and Cl₂. At 35°C the equilibrium constant is 1.6X10⁻⁵. In an experiment in which 1.0mol NOCl is placed in a 2.0L flask, wha ae the equilibrium concentrations?

LeChatelier's Principle

- If a change is imposed on a system at equilibrium, the position of the equilibrium will shift in the direction that tends to reduce the change.
- Change of Concentration
 - If a reactant or product is added to a system at equilibrium, the system will shift away from the added component
 - If a reactant or product is removed from the system, the system will shift towards that component