Applications of Aqueous Equilibria Chapter 15

Buffered Solutions

(buffer – to lessen)

- A solution that resists a change in pH when an acid or a base is added to it
- o it contains a substance that will neutralize the added H⁺ or OH⁻
- usually formed by dissolving fairly equal amounts of a <u>weak acid and a salt of that acid</u>.
 ex. HF and NaF
- an equilibrium is established between the acid and the anion from the salt • ex. HF $\leftarrow \rightarrow$ H⁺ + F⁻
- If \underline{H}^+ is added to the solution:
 - the system shifts left forming more HA (HA \leftarrow H⁺ + A⁻)
- \circ If OH⁻ is added to the solution
 - the system shifts right, breaking up HA to form $H^+ + A^-$ (HA $\rightarrow H^+ + A^-$)
 - o the newly formed H⁺ ions neutralize the added OH⁻
 - $H^+ + OH^- \rightarrow H_2O$

The Henderson Hasselbach equation is used to determine the pH of a buffer solution

$$pH = pk_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]}$$

- o ex. 15.4 0.75 M HC₃H₅O₃ (lactic acid $K_a = 1.4 \times 10^{-4}$) and 0.25M NaC₃H₅O₃ (sodium lactate)
- o Determine the pH

- o ex. 15.6 pH of solutions when 0.010 mol HCl is added to 1.0L of
 - o a) $5.00M HC_2H_3O_2$ and $5.00M NaC_2H_3O_2$
 - o b) 0.050M HC_2H_3O_2 and 0.050M NaC_2H_3O_2
 - $K_a = 1.8 \times 10^{-5}$

How do you pick which acid to use in your buffer solution?

- \circ pick an acid that has a pk_a as close as possible to the pH of the desired solution
- set up your solution so $[A^-] = [HA]$
 - $pH = pk_a + \log 1$ but $\log 1 = 0$ so $pH = pk_a$

Titration (or pH Curve)


- adding a solution of known concentration (the titrant) until the substance being analyzed is used up
- you would add an acid to a base (or a base to an acid) until the "equivalence point" is reached.

Equivalence Point

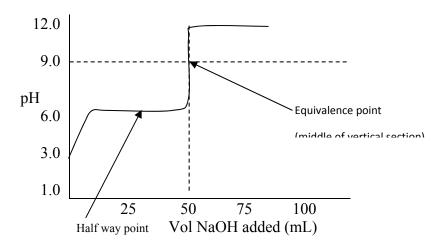
- o the point at which equal numbers of moles of H^+ and OH^- have been added to a mixture
- o an indicator changes color when the equivalence point is reached

Titration (or pH) Curve

- a graph of pH (y-axis) vs volume of the titrant (x-axis)
- o can be used to
 - 1. find the titration's equivalence point
 - 2. calculate the acids concentration
 - 3. for weak acids, determine the Ka
- the shape of the graph depends on the strengths of the acid and base used
 - 1. Titrating a Strong Acid with a Strong Base

 $\circ~$ as the base is first added the pH only changes a little because there is so much $\rm H^{+}$ (strong acid)

- the pH changes faster near the equivalence point because most of the H⁺ has been neutralized.
- \circ for a strong acid base titration, the pH at the equivalence point is 7.0


To find the [Acid]

• at the equivalence point, mol $OH^- = mol H^+$

so (volume Base)(M_{base}) = mol OH⁻ = mol H⁺

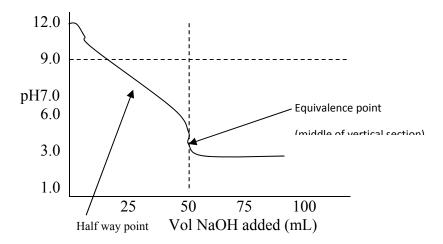
therefore: $M_{acid} = mol H^+/Vol Acid$ (measured at the start of the titration)

2. Titrating a weak Acid with a strong Base

- o pH increases rapidly at start (strong base)
- o pH levels off near half way point (this point is half way to the equivalence point)
- pH levels off as a buffer solution is formed

• $HA + OH^- \rightarrow A^- + H_2O$

at halfway point $[HA] = [A^-]$ HA = H⁺ + A⁻ (buffer effect)


 $\circ~$ at equivalence point, the pH >7.0 because of the reaction of the acids anion with $\rm H_2O$

 $A^- + H_2O = HA + OH^-$

- the weaker the acid, the higher the pH at the equivalence point (It's conjugate base would be stronger)
- o If the Molarity of the acid is known, Ka can be calculated at the halfway point
- \circ at the halfway point, half of the HA has been converted to A⁻
- \circ so mol HA remaining = mol A⁻ already formed or

 $[HA] = [A^{-}]$ since $K_a = [H^{+}] [A^{-}] / [HA]$ $K_a = [H^{+}] = antilog -pH (pH is known from the graph)$

3. Titrating a Weak Base (NH₃) with a Strong Acid (HCl)

- o curve levels off due to NH₃ / NH₄⁺ buffering
- pH < 7 at equivalence point because of the reaction NH₄⁺ → NH=3 + H⁺

<u>Acid – Base Indicators</u>

- o using an indicator is another way to identify the equivalence point in a titration
- o the indicator changes color at the equivalence poi8nt (the "End Point")
- o indicators are actually weak acids whose conjugate base is a different color

• ex. phenolphthalein
$$HIn = H^+ + In^-$$

clear pink

 for titrating an acid with a a base choose an indicator whose pK_a = pH at equivalence point +1

or $pH = pk_a - 1$

- for titrating a <u>base with an acid</u> choose or $pH = pk_a + 1$
 - ex. Strong Acid with Strong Base
 - \circ at equivalence point, pH = 7.00
 - $pH = pk_a 1$
 - \therefore pk_a = 8 for indicator (fig. 15.8)
 - $K_a = 1 \times 10^{-8}$ (phenolphthalein)

ex. Weak Acid with Strong Base

- if at equivalence point, pH = 11.00 $pH = pk_a - 1$
 - \therefore pk_a = 12 for indicator (fig. 15.8)
 - $K_a = 1 \times 10^{-12}$ (choose appropriate indicator from reference)

Solubility Product Constant (Ksp)

• the equilibrium constant for a saturated solution of an ionic compound dissolved in H₂O

• ex.
$$CaF_{2(s)} \rightarrow Ca^{+2}(aq) + 2F^{-}(aq)$$

 $k_{sp} = [Ca^{+}][F^{-}]$

- ** Solid CaF₂ does not appear in the expression
 o k_{sp} values are given in table 14.4 and appendices in back of book

Ex. 15.12

The solubility of Copper I bromide is 2.0×10^{-4} M, at 25°C. What is the value of the k_{sp} for this salt?

<u>15.12</u> (p.748) At 25°C, solubility of Bi₂S₃ is $1.0x10^{-15}$ M. K_{sp}=?

If you know a salt's K_{sp}, you can work the problem in the other direction and solve for the salt's <u>solubility</u>.

 $\frac{15.14}{\text{(p749)}}$ For Cu(IO₃)₂, K_{sp}=1.4x10⁻⁷ Calculate its solubility at 25°C.

Relative Solubilities

- if salts produce the <u>same number</u> of ions in solution, their K_{sp}'s can be used to compare solubilities.
- Ex. AgI $K_{sp}=1.6 \times 10^{-16}$ CuI $K_{sp}=5.0 \times 10^{-12}$
- since they each make 2 ions in solution.

 $MX=M^{+} + X^{-}$ $[M^{+}]=[X^{-}]=Y$ $K_{sp}=[M^{+}][X^{-}]=(Y)(Y)=Y^{2}$ $Y=solubility=\sqrt{K_{sp}}$

(therefore symbol-sorry couldn't find it on this computer)CuI is <u>more soluble</u> because its K_{sp} is larger

- if salts produce different numbers of ions in solution you would have to use the K_{sp} of each slat to actually calculate each salt's solubility
- you could then compare the solubilities directly

Common Ion Effect

- a common ion is an ion that is found in 2 different solutes.
- Ex. CaF₂ \setminus F⁻ is an ion "common" to both salts NaF /

• the presence of a common ion from one salt will <u>decrease</u> the solubility of a second salt

<u>15.15</u> (p752) Calculate the solubility of CaF₂ (K_{sp} =4x10⁻¹¹) in a solution that is 0.052M NaF.

- Any ion that causes a change in concentration of a dissolved ion will affect a salt's solubility
- Ex. $Mg(OH)_2$ is more soluble in Acid than in H_2O

 $Mg(OH)_{2(s)}=Mg^{+2}+2OH^{-1}$

- In acid, $H^+ + OH^- \rightarrow H_2O$
 - from acid ^ ^from Mg(OH)₂
- Removal of OH⁻ causes the equilibrium to shift to the <u>right</u> and more Mg(OH)₂ will dissolve
- Another important example of this is the solubility of <u>carbonates</u> in <u>acid</u>
- Ex. $Na_2CO_{3(s)} = 2Na^+ + CO_3^{-2}$

◦ In acid: $2H^+ + CO_3^{-2} \rightarrow H_2CO_3 \rightarrow H_2O + CO_2$

- As CO_3^{-2} is used up the equilibrium shifts to the <u>right</u>
- More Na₂CO₃ dissolves so its solubility is <u>increased</u>

Precipitation

• If solutions are moxed and the resulting ion product exceeds a salt's K_{sp}, that salt will precipitate out of the solution.

 $\frac{15.16}{\text{Will Ce(IO_3)_3 precipitate?}} \text{ for Ce(IO_3)_3 are mixed with 300.0mL of 2.0x10^{-2}M KIO_3.}$

Complex Ions

- A metal ion surrounded by "ligands"
- Ligand- a Lewis base (has a lone pair of electrons)
 - Commonly H₂O, NH₃, Cl⁻, CN⁻, OH⁻, & SCN⁻ (thiocyanate)
 - The ligand forms a place where there can be attraction to a H₂O molecule
 - o This increases the solubility of the metal ion in the H2O
 - The number of ligands attached to a metal ion is called the "coordination number" (commonly twice the ions charge)

Ex. $(Co(H_2O)_6^{+2})$ Ag $(NH_3)_2^{+1}$ Cu $(NH_3)_4^{+2}$ Ex. Ag $Cl_{(s)} + 2NH_3 = Ag(NH_3)_2^{+1} + Cl^{-1}$

Examples from AP Exams

NH₃ as a ligand:

 $Zn(OH)_{2 (s)} + 4NH_{3 (aq)} \rightarrow Zn(NH_{3})_{4}^{+2}(aq) + 2OH^{-}(aq)$ $CuCl_{2 (s)} + 4NH_{3 (aq)} \rightarrow Cu(NH_{3})_{4}^{+2}(aq) + 2Cl^{-}(aq)$ $AgCl_{(s)} + 2NH_{3 (aq)} \rightarrow Ag(NH_{3})_{2}^{+}(aq) + Cl^{-}(aq)$

OH⁻ as a ligand Al(OH)_{3(s)} + OH⁻_(aq) \rightarrow Al(OH)₄⁻_(aq) Zn(OH)_{2(s)} + 2OH⁻_(aq) \rightarrow Zn(OH)₄²⁻

CN⁻ as a ligand Ag⁺ + CN⁻ \rightarrow Ag(CN)₂⁻