Spontaneity, Entropy, & Free Energy

Chapter 16

Review: <u>Thermodynamics</u>

• The study of energy and its conversions

First Law of Thermodynamics:

• The change in a systems internal energy (ΔE) is equal to the heat gained by the system (q) plus the work done on the system (w)

$$\Delta \mathbf{E} = \mathbf{q} + \mathbf{w}$$

Spontaneous Change

- A change that occurs at given conditions without outside intervention
- Could be fast changes or slow changes but change does occur

Entropy (S)

- A measure of a substance's randomness or disorder
- In nature, systems tend to change from more ordered to less ordered states
- One way to measure entropy is by considering "positional probability"
- The greater the number of positions that the particles can be in, the greater the entropy
- Ex. Solid \rightarrow Liquid \rightarrow Gas \rightarrow Entropy increases \rightarrow
- <u>16.1</u> (p783) Which has the highest positional entropy? a) CO_{2 (s)} vs. CO_{2 (g)}
 - b) $N_{2(g)}$ at 1 atm vs. $N_{2(g)}$ at 1.10x10⁻² atm
- <u>16.2</u> (p783) What is the sign on the entropy change when: a) sugar is dissolved in H_2O
 - b) $I_{2(g)}$ condenses on a cold surface

Second Law of Thermodynamics

- In any spontaneous change, there is always an increase in the entropy of the universe. (The entropy of the universe is increasing)
- $\Delta S = \Delta S_{surroundings} + \Delta S_{system}$

- In truth, we really <u>do not</u> deal with this law in any problem solving. We will find ourselves mainly dealing with the entropy changes in chemical reactions. One note, to calculate the $\Delta S_{surroundings}$
 - $\circ \quad \Delta S_{surroundings} = -\Delta H/T$

Entropy Changes in Chemical Reactions

- For gaseous systems
 - if the number of moles of gases increases during the reaction, positional probability increases $(+\Delta S)$
 - because there are more particles, there are more different positions the particles could be in.

 $(-\Delta S)$

ex. $4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(g)}$ $9 \text{ mol} \rightarrow 10 \text{ mole} (+\Delta S)$ $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$

4 mol \rightarrow 2 mol

Absolute Entropy (S⁰)

- At a given temperature, every substance has a measurable entropy value
- many of these values are listed in appendix 4 in your textbook
- the more organized and colder a substance is, the lower its absolute entropy value

Third Law of Thermodynamics

The entropy of a perfect crystal at 0 k is zero

- S⁰ is measured in j/mol k
- S⁰ is a "state function" (independent of path)
- so: $\Delta S^{0}_{rxn} = \Sigma S^{0}_{products} \Sigma S^{0}_{reactants}$ or:

$$\Delta S^{0}_{rxn} = \Sigma S^{0}_{P} - \Sigma S^{0}_{R}$$

ex. 16.7
$$2NiS_{(s)} + 3O_{2(g)} \rightarrow 2SO_{2(g)} + 2NiO_{(s)}$$

 $\Delta S^0 = ?$ (S⁰ values given on table in question)

ex. 16.8 Al₂O_{3(s)} + $3H_{2(g)} \rightarrow 2Al_{(s)} + 3H_2O_{(g)}$

Entropy vs. Structure

- the more complex a molecule is, the higher its entropy value.
- the more complex the molecule the greater the types of motion in its atoms

Gibbs Free Energy (G)

- this is a thermodynamic function used to predict whether or not a reaction is spontaneous
 - this is sometimes defined as the energy available to do useful work.
- G = H TS• so:

SO:
$$\Delta G = \Delta H - T\Delta S$$
 (T= Kelvin)

- o if $-\Delta G$, the reaction is spontaneous
- o if $+\Delta G$, the reaction does not occur
- if $\Delta G =$), the system is at equilibrium

ex. For Br_{2(l)} \rightarrow Br_{2(g)} $\Delta H^0 = 31.0 \text{ kj/mol} \text{ and} \Delta S^0 = 93.0 \text{ j/mol k}$. Is this reaction spontaneous at 25°C?

 $\Delta G = \Delta H - T\Delta S$ $\Delta G = 31,000 \text{ j/mol} - (298\text{k})(93 \text{ j/mol k})$ $= 31,000 - 27,714 = +3286 \text{ j/mol} \text{ No reaction } (+\Delta G)$

Standard Free Energy Change (ΔG^0)

- This is the free energy change that occurs if the reactants, in their standard states, are converted to products, in their standard states.
- from section 6.4: Standard states: gases: P = 1atm, solutions = 1M, liquid or solid = liq. or sol.

Basically there are 2 ways to calculate ΔG^0

1. $\Delta G^0 = \Delta H^0 - T\Delta S^0$ ex. 16.9 $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$ at 25°C Using the given values of ΔH^0_f and S^0 , calculate ΔH^0 , ΔS^0 , and ΔG^0 for this reaction.

 Manipulating reactions with known ΔG⁰'s to produce the desired reaction (we did this in Chapter 6 and Chapter 8 with ΔH's) Ex. For 2CO_(g) + O₂(g) → 2CO_{2(g)} ΔG⁰ = Given: 2CH_{4(g)} + 3O_{2(g)} → 2CO_(g) + 4H₂O_(g) ΔG⁰ = -1088kj CH_{4(g)} + 2O_{2(g)} → CO_{2(g)} + 2H₂O_(g) ΔG⁰ = -801kj

Ex. 16.10 Given: $C_{diamond} + O_{2(g)} \rightarrow CO_{2(g)}$ $C_{graphite} + O_{2(g)} \rightarrow CO_{2(g)}$ for $C_{diamond} \rightarrow C_{graphite}$ $\Delta G^{0} = -397kj$ $\Delta G^{0} = -394kj$

Standard free Energy of Formation (ΔG^0_f)

- this is th standard free energy change when 1 mole of a sutbstance is formed feom its elements
- it works the same as other Gibbs free energy problems

$$\begin{array}{rcl} \circ & \Delta G^{0}{}_{rxn} = & \Delta G^{0}{}_{P} - & \Delta G^{0}{}_{R} \\ \circ & your \ references \ must \ be \ for \ \Delta G^{0}{}_{f} \\ Ex. \ 16.11 \ \& \ 16.12 \end{array}$$

- Sometimes you have to determine ΔG for a reaction at nonstandard conditions:
- to do this you use the equation: $\Delta G = \Delta G^0 + RT \ln Q$
 - where: ΔG = free energy change at nonstandard conditions
 - ΔG^0 = the standard free energy change
 - R = gas constant = 8.31 j/mol k
 - T = temperature, k
 - Q = reaction quotient (or mass action expression)

Ex. 16.13 $CO_{(g)} + 2H_{2(g)} \rightarrow CH_3OH_{(l)}$ If CO = 5.0 atm and $H_2 = 3.0$ atm, (nonstandard conditions) Calculate ΔG at 25°C

Appendix 4: Δ^{0}_{f} CH₃OH = -166kj H₂ = 0 CO = -137kj

Free Energy and equilibrium

• at equilibrium $G_{\text{products}} = G_{\text{reactants}}$ o $\therefore \Delta G = 0$

Here Comes a derivation:

- We know: $\Delta G = \Delta G^0 + RT \ln Q$
- but at equilibrium: $\Delta G = 0$ and $Q = K_{eq}$
- so: $0 = \Delta G^0 + RT \ln Q$
- or: $\Delta G^0 = -RT \ln K$ **found on equation sheets**
- this means that you can use ΔG° to calculate K_{eq} at nonstandard conditions.

Ex. For the reaction

 $H_2O_{(l)} = H^+_{(aq)} + OH^-_{(aq)} \text{ at } 25^\circ\text{C},$ $\Delta G^0 = 79.83 \text{ kj/mol}$ Calculate the value of k for this reaction $\Delta G^0 = -\text{RT lnk}$

$$\ln k = \frac{\Delta G^{\circ}}{-RT} = \frac{\frac{79,830 \, J_{mol}}{-(8.31 \, j_{mol})(298K)}} = -32.24$$

k=anti ln - 32.24=9.96x10⁻¹⁵=
$$1.0x10^{-14}$$
 (=K_w)

Ex. For the reaction

 $NO_{(g)} + O_{2(g)} \leftrightarrow NO_{2(g)} + O_{2(g)}$ at 25°C Calculate ΔG^{o} and k

 $\begin{array}{c} \underline{Given} \ \underline{\Delta G^o}_f \\ NO & 87 kj/mol \\ NO_2 & 52 \ kj/mol \end{array}$ O_2 0

163 kj/mol O3